已知扇形的圓心角為240°,半徑為6,則扇形的面積是
 
考點:扇形面積公式
專題:計算題,三角函數(shù)的求值
分析:將圓心角轉(zhuǎn)化為弧度,再利用扇形的弧長、面積公式即可求得答案.
解答: 解:∵圓心角θ=240°=
3
,扇形的半徑R=6,
∴圓心角θ所對的弧長l=θR=
3
×6=8π,
∴該扇形的面積S=
1
2
lR=
1
2
×8π×6=24π.
故答案為:24π.
點評:本題考查扇形的面積公式的應用,考查角度制與弧度制的互化,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,多面體ABCPQ中,PA⊥平面ABC,PA=AB,△ABC是等腰直角三角形,∠BAC=90°,△QBC是等邊三角形,M是BC的中點,二面角Q-BC-A的正切值為-
2

(Ⅰ)證明:PQ∥平面ABC;
(Ⅱ)在線段QM上是否存在一點N,使得PN⊥平面QBC,如果存在,請求出N點的位置,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,則AC1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(n)>0(n∈N*),f(2)=4,并且對于任意n1,n2∈N*,f(n1+n2)=f(n1)f(n2)成立,猜想f(n)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在xOy平面上,將雙曲線的一支
x2
9
-
y2
16
=1(x>0)及其漸近線y=
4
3
x和直線y=0,y=4圍成的封閉圖形記為D,如圖中陰影部分.記D繞y軸旋轉(zhuǎn)一周所得的幾何體為Ω.過(0,y)(0≤y≤4)作Ω的水平截面,計算截面面積,利用祖暅原理得出Ω的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=2”是直線ax+2y+1=0和直線3x+(a+1)y-1=0平行的
 
條件.(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中選擇一個填空)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<α<
π
2
,tan
α
2
+cot
α
2
=
5
2
,則sin(α-
π
3
)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(3,3),|
b
|=6,
a
⊥(
a
-
b
),則向量
a
b
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1,x≤0
log2x+1,x>0
,則f(f(
1
4
))( 。
A、-
1
2
B、
1
2
C、1
D、7

查看答案和解析>>

同步練習冊答案