已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)的一個(gè)焦點(diǎn),并與雙曲線(xiàn)的實(shí)軸垂直,已知拋物線(xiàn)與雙曲線(xiàn)的交點(diǎn)為.
(1)求拋物線(xiàn)的方程;
(2)求雙曲線(xiàn)的方程.

(1);(2)

解析試題分析:(1)由題意知,拋物線(xiàn)的焦點(diǎn)在軸上,又過(guò)點(diǎn),
所以,設(shè)拋物線(xiàn)方程為,           2分
代入點(diǎn),有
,                         5分
所以?huà)佄锞(xiàn)的方程為                6分
(2)由(1)知所求雙曲線(xiàn)的一個(gè)焦點(diǎn)為          9分
設(shè)所求雙曲線(xiàn)方程為代入點(diǎn),得 ,
故所求雙曲線(xiàn)的方程為    12分
考點(diǎn):本題考查了拋物線(xiàn)與雙曲線(xiàn)方程的求法
點(diǎn)評(píng):求指定的圓錐曲線(xiàn)的方程是高考命題的重點(diǎn),主要考查識(shí)畫(huà)圖、數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化、分類(lèi)討論、邏輯推理、合理運(yùn)算及創(chuàng)新思維能力,解決好這類(lèi)問(wèn)題,除要求熟練掌握好圓錐曲線(xiàn)的定義、性質(zhì)外,命題人還常常將它與對(duì)稱(chēng)問(wèn)題、弦長(zhǎng)問(wèn)題、最值問(wèn)題等綜合在一起命制難度較大的題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)設(shè)直線(xiàn)與橢圓相交于兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).
(1)證明:
(2)若的面積及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn).
① 若直線(xiàn)垂直于軸,求的大小;
② 若直線(xiàn)軸不垂直,是否存在直線(xiàn)使得為等腰三角形?如果存在,求出直線(xiàn)的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的頂點(diǎn)與雙曲線(xiàn)的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的一個(gè)頂點(diǎn)為,離心率為,直線(xiàn)與橢圓交于不同的兩點(diǎn)、.(1) 求橢圓的方程;(2) 當(dāng)的面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知點(diǎn)F是拋物線(xiàn)C:的焦點(diǎn),S是拋物線(xiàn)C在第一象限內(nèi)的點(diǎn),且|SF|=

(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線(xiàn)C于M、N兩點(diǎn);
①判斷直線(xiàn)MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標(biāo)軸平行的直線(xiàn)l與橢圓交于不同的兩點(diǎn)M、N,且線(xiàn)段MN中點(diǎn)的橫坐標(biāo)為–,求直線(xiàn)l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分16分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分6分.
(文)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿(mǎn)足(其中為坐標(biāo)原點(diǎn)), 過(guò)點(diǎn)作一斜率為的直線(xiàn)交橢圓于兩點(diǎn)(其中點(diǎn)在軸上方,點(diǎn)在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),判斷的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知雙曲線(xiàn)C與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為.
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)若直線(xiàn)與雙曲線(xiàn)有兩個(gè)不同的交點(diǎn),且
(其中為原點(diǎn)),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案