12.下列命題中,正確的命題是( 。
A.平行于同一直線的兩個(gè)平面平行
B.共點(diǎn)的三條直線只能確定一個(gè)平面
C.若一個(gè)平面中有無(wú)數(shù)條直線與另一個(gè)平面平行,則這兩個(gè)平面平行
D.存在兩條異面直線同時(shí)平行于同一個(gè)平面

分析 A,平行于同一直線的兩個(gè)平面平行可能相交;
B,共點(diǎn)的三條直線可能不在一個(gè)平面內(nèi);
C,無(wú)數(shù)條直線平行時(shí),不能確定這兩個(gè)平面平行;
D,根據(jù)線面平行的判定定理判斷.

解答 解:對(duì)于A,平行于同一直線的兩個(gè)平面平行可能相交,故錯(cuò);
對(duì)于B,共點(diǎn)的三條直線可能不在一個(gè)平面內(nèi),故錯(cuò);
對(duì)于C,無(wú)數(shù)條直線平行時(shí),不能確定這兩個(gè)平面平行,故錯(cuò);
對(duì)于D,根據(jù)線面平行的判定,存在兩條異面直線同時(shí)平行于同一個(gè)平面,故正確.
故選:D.

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系,是對(duì)空間想象能力的考查,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an} 是各項(xiàng)均為正數(shù)的等比數(shù)列,且a2=1,a3+a4=6
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an-n} 的前n 項(xiàng)和為Sn,比較S4 和S5 的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓心為C的圓過(guò)點(diǎn)A(-2,2),B(-5,5),且圓心在直線l:x+y+3=0上
(Ⅰ)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M(-2,9)作圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.過(guò)點(diǎn)A(0,2)且與圓(x+3)2+(y+3)2=18切于原點(diǎn)的圓的方程是(x-1)2+(y-1)2 =2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,且過(guò)點(diǎn)(1,$\frac{\sqrt{3}}{2}$),橢圓上頂點(diǎn)為A,過(guò)點(diǎn)A作圓(x-1)2+y2=r2(0<r<1)的兩條切線分別與橢圓E相交于點(diǎn)B,C(不同于點(diǎn)A),設(shè)直線AB,AC的斜率分別為kAB,KAC
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求kAB•kAC的值;
(3)試問(wèn)直線BC是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平面向量$\overrightarrow{a}$=(-1,2)與$\overrightarrow$=(3k-1,1)互相垂直,則k的值為( 。
A.$\frac{1}{6}$B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在區(qū)間(-1,2)中任取一個(gè)數(shù)x,則使2x>3的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1.
(1)當(dāng)a=2時(shí),求f(x)在(1,f(1))處的切線方程;
(2)若a>0,且對(duì)x∈(0,+∞)時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知二次函數(shù)f(x)的圖象與x軸交于點(diǎn)(1,0),與y軸交于點(diǎn)(0,-1),其最小值為-1
(1)求f(x)的解析式;
(2)若g(x)=$\sqrt{f(x)+2}$-mx(m>0)是[0,+∞)上的單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案