求過(guò)點(diǎn),且與橢圓有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.

 

【答案】

解:由題意可知所求橢圓的焦點(diǎn)為,,設(shè)其標(biāo)準(zhǔn)方程為,將點(diǎn)的坐標(biāo)代入可得

…………………………①

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052206024725007619/SYS201205220603518593671581_DA.files/image007.png">………………②

由①②解得,則

所以,所求橢圓的標(biāo)準(zhǔn)方程為 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知對(duì)于任意實(shí)數(shù)k,直線(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒過(guò)定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+
3

(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O:x2+y2=r2(r>0)與橢圓C有4個(gè)相異公共點(diǎn),試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)如圖,橢圓E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過(guò)F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(福建卷解析版) 題型:解答題

如圖,橢圓E:的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率。過(guò)F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8

(Ⅰ)求橢圓E的方程。

(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q。試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由

【解析】

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本題滿分15分)

在平面直角坐標(biāo)系xOy中,已知對(duì)于任意實(shí)數(shù),直線恒過(guò)定點(diǎn)F. 設(shè)橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為.

(1)求橢圓C的方程;

(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O與橢圓C有4個(gè)相異公共點(diǎn),試分別判斷圓O與直線l1mx+ny=1和l2mx+ny=4的位置關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省湖州市部分地區(qū)高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知對(duì)于任意實(shí)數(shù)k,直線恒過(guò)定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為
(1)求橢圓C的方程;
(2)設(shè)(m,n)是橢圓C上的任意一點(diǎn),圓O:x2+y2=r2(r>0)與橢圓C有4個(gè)相異公共點(diǎn),試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案