【題目】設(shè)橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓軸的一個(gè)交點(diǎn).已知橢圓與直線相交于兩點(diǎn),延長與橢圓交于點(diǎn).

1)求橢圓的方程;

2)求面積的最大值.

【答案】(1)(2)3

【解析】

1)求出圓心,以及與軸的的交點(diǎn)(圓心右側(cè)),為橢圓的右頂點(diǎn),即可求出橢圓方程;

(2)根據(jù)橢圓的對稱性,設(shè),直線,橢圓方程與直線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,利用韋達(dá)定理,求出關(guān)于為變量的函數(shù),運(yùn)用換元法,結(jié)合求導(dǎo),求出函數(shù)的最值,即為面積的最大值.

1)圓,化為,

圓心,與軸交點(diǎn)坐標(biāo),

右頂點(diǎn)為,所求的橢圓方程為.

2)設(shè),,

得,.

,

,

,則,,

,

設(shè),恒成立,

單調(diào)遞增,當(dāng)時(shí),取得最小值,

此時(shí)取得最大值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線交橢圓EAM兩點(diǎn),點(diǎn)N在橢圓E上,且.

1)當(dāng)時(shí),求的面積;

2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左,右焦應(yīng)分別是,,離心率為,過且垂直于軸的直線被橢圓截得的線段長為1.

1)求橢圓的方程;

2)已知直線與橢圓切于點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn),且與直線交于點(diǎn).證明:存在常數(shù),使得,并求的值;

3)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,,設(shè)后的角平分線的長軸于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點(diǎn)處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,中有3個(gè)點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸、軸分別交于、兩點(diǎn),設(shè)直線,的斜率分別為,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCDAB垂直于ADBC,,且.M是棱SB的中點(diǎn).

(Ⅰ)求證:SCD;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)N是直線CD上的動點(diǎn),MN與面SAB所成的角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,且的最小值為,的圖像的相鄰兩條對稱軸之間的距離為.

1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

2)在中,角,,所對的邊分別為,,.,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集I=1,23,4,56},集合A,B都是I的子集,若AB=13,5},則稱AB理想配集,記作(A,B),問這樣的理想配集A,B)共有( )

A. 7個(gè) B. 8個(gè) C. 27個(gè) D. 28個(gè)

查看答案和解析>>

同步練習(xí)冊答案