過橢圓
的右焦點
作相互垂直的兩條弦
和
,若
的最小值為
,則橢圓的離心率
( )
試題分析:若
的最小值為
,由均值不等式可知兩相等時有最小值,即
=
=
時成立,又過右焦點互相垂直的兩弦,則由橢圓的對稱性可知,所在直線斜率分別為1或-1,不防令
與橢圓聯(lián)立,利用弦長公式得出
=
,可得e=
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
(a>b>0)的離心率為
,且橢圓C上一點與兩個焦點F
1,F(xiàn)
2構成的三角形的周長為2
+2.
(1)求橢圓C的方程;
(2)過右焦點F
2作直線l 與橢圓C交于A,B兩點,設
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K
1,K
2且K
1K
2=-
(1).求動點P的軌跡C方程;
(2).設直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓
經(jīng)過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線段
為直徑的圓過點
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的焦點在
軸上,離心率為
,對稱軸為坐標軸,且經(jīng)過點
.
(1)求橢圓
的方程;
(2)直線
與橢圓
相交于
、
兩點,
為原點,在
、
上分別存在異于
點的點
、
,使得
在以
為直徑的圓外,求直線斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知F
1、F
2是橢圓
=1的兩焦點,經(jīng)點F
2的直線交橢圓于點A、B,若|AB|=5,則|AF
1|+|BF
1|等于( 。
A.16 B.11 C.8 D.3
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左焦點為
,直線
與橢圓相交于點
、
,當△FAB的周長最大時,
的面積是____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
、
分別是橢圓
的左、右焦點,點
在橢圓
上,線段
的中點在
軸上,若
,則橢圓的離心率為( )
查看答案和解析>>