過橢圓的右焦點作相互垂直的兩條弦,若 的最小值為,則橢圓的離心率(  )
A.B.C.D.
B

試題分析:若的最小值為,由均值不等式可知兩相等時有最小值,即==時成立,又過右焦點互相垂直的兩弦,則由橢圓的對稱性可知,所在直線斜率分別為1或-1,不防令與橢圓聯(lián)立,利用弦長公式得出=,可得e=
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點與兩個焦點F1,F(xiàn)2構成的三角形的周長為2+2.
(1)求橢圓C的方程;
(2)過右焦點F2作直線l 與橢圓C交于A,B兩點,設,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動點P的軌跡C方程;
(2).設直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓經(jīng)過點,其左、右頂點分別是、,左、右焦點分別是、(異于、)是橢圓上的動點,連接交直線兩點,若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2是橢圓=1的兩焦點,經(jīng)點F2的直線交橢圓于點A、B,若|AB|=5,則|AF1|+|BF1|等于( 。
A.16       B.11       C.8       D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左焦點為,直線與橢圓相交于點、,當△FAB的周長最大時,的面積是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的長軸在軸上,焦距為,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、分別是橢圓的左、右焦點,點在橢圓上,線段的中點在軸上,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案