6.設(shè)復(fù)數(shù)z滿足$z+2\overline z=3-i$(i為虛數(shù)單位),則z=1+i.

分析 設(shè)z=x+yi,則$\overline{z}=x-yi$代入$z+2\overline{z}$,再由復(fù)數(shù)相等的充要條件,即可得到x,y的值,則答案可求.

解答 解:設(shè)z=x+yi,∴$\overline{z}=x-yi$.
則$z+2\overline{z}$=x+yi+2(x-yi)=3-i,即3x-yi=3-i,
∴x=1,y=1,因此,z=1+i.
故答案為:1+i.

點評 本題考查了復(fù)數(shù)代數(shù)形式的混合運算,考查了復(fù)數(shù)相等的充要條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}=1$,則x+2y的最小值為8;則xy的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.三棱錐S-ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則棱SB的長為4$\sqrt{2}$;直線SB與AC所成角的余弦值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{1+lnx}{x}$在區(qū)間(a,a+$\frac{2}{3}$)(a>0)上不單調(diào),則實數(shù)a的取值范圍是( 。
A.(0,1)B.($\frac{2}{3}$,1)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
(1)求四棱錐S-ABCD的體積;
(2)求證:BC⊥面SAB;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某班級要從5名男生和2名女生中選出3人參加公益活動,則在選出的3人中男、女生均有的概率為$\frac{5}{7}$(結(jié)果用最簡分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知正三棱柱ABC-A1B1C1的底面積為$\frac{{9\sqrt{3}}}{4}$,側(cè)面積為36;
(1)求正三棱柱ABC-A1B1C1的體積;
(2)求異面直線A1C與AB所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},則A∩B={2,4,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點A是圓O:x2+y2=4上的一個定點,點B是圓O上的一個動點,若滿足|$\overrightarrow{AO}$+$\overrightarrow{BO}$|=|$\overrightarrow{AO}$-$\overrightarrow{BO}$|,則$\overrightarrow{AO}$•$\overrightarrow{AB}$=4.

查看答案和解析>>

同步練習(xí)冊答案