已知向量a=(Asin ωx,Acos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ為銳角.f(x)的圖象的兩個(gè)相鄰對(duì)稱中心的距離為,且當(dāng)x=時(shí),f(x)取得最大值3.
(1)求f(x)的解析式;
(2)將f(x)的圖象先向下平移1個(gè)單位,再向左平移φ(φ>0)個(gè)單位得g(x)的圖象,若g(x)為奇函數(shù),求φ的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知α=,回答下列問(wèn)題.
(1)寫(xiě)出所有與α終邊相同的角;
(2)寫(xiě)出在(-4π,2π)內(nèi)與α終邊相同的角;
(3)若角β與α終邊相同,則是第幾象限的角?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[-6,-]時(shí),求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈時(shí),求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=(A>0,>0,)的圖象的一部分如下圖所示.
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x(-6,2)時(shí),求函數(shù)g(x)= f(x+2)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象與y軸的交點(diǎn)為,它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為
(1)求的解析式及的值;
(2)若銳角滿足的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=sin +cos,g(x)=2sin2.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)已知銳角△ABC中角A,B,C的對(duì)邊分別為a,b,c.其面積,求b+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中),滿足.
(Ⅰ)求函數(shù)的最小正周期及的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最小值,并且求使函數(shù)取得最小值的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com