已知雙曲線1和橢圓1(a0,mb0)的離心率互為倒數(shù),那么以a,b,m為邊長(zhǎng)的三角形是(  )

A.銳角三角形 B.直角三角形

C.鈍角三角形 D.銳角或鈍角三角形

 

B

【解析】雙曲線1的離心率e1,橢圓1的離心率e2,則 1,即m2a2b2.為直角三角形

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷2練習(xí)卷(解析版) 題型:填空題

如果執(zhí)行下列程序框圖,那么輸出的S________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷6練習(xí)卷(解析版) 題型:填空題

右圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5],樣本數(shù)據(jù)的分組為[20.5,21.5),[21.522.5),[22.5,23.5)[23.5,24.5),[24.5,25.5),[25.5,26.5].已知樣本中平均氣溫低于22.5 ℃的城市個(gè)數(shù)為11,則樣本中平均氣溫不低于25.5 ℃的城市個(gè)數(shù)為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:解答題

已知圓C經(jīng)過(guò)點(diǎn)A(2,0),B(0,2),且圓心C在直線yx上,又直線lykx1與圓C相交于PQ兩點(diǎn).

(1)求圓C的方程;

(2)·=-2,求實(shí)數(shù)k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:選擇題

已知橢圓E1(ab0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交EA,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為(  )

A. 1 B.1 C.1 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:解答題

如圖,多面體ABCA1B1C1中,三角形ABC是邊長(zhǎng)為4的正三角形,AA1BB1CC1,AA1平面ABC,AA1BB12CC14.

(1)OAB的中點(diǎn),求證:OC1A1B1

(2)在線段AB1上是否存在一點(diǎn)D,使得CD平面A1B1C1,若存在,確定點(diǎn)D的位置;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:填空題

如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱AA1平面A1B1C1,正視圖是邊長(zhǎng)為2的正方形,該三棱柱的側(cè)視圖的面積為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷3練習(xí)卷(解析版) 題型:填空題

如圖,互不相同的點(diǎn)A1,A2,An,B1B2,,Bn,分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn1An1的面積均相等,設(shè)OAnan.a11a22,則數(shù)列{an}的通項(xiàng)公式是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:解答題

設(shè)定義在(0,+∞)上的函數(shù)f(x)axb(a0)

(1)f(x)的最小值;

(2)若曲線yf(x)在點(diǎn)(1,f(1))處的切線方程為yx,求a,b的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案