3.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為(  )
A.30°B.45°C.60°D.90°

分析 由A1B∥D1C,得異面直線A1B與AD1所成的角為∠AD1C.

解答 解:∵A1B∥D1C,
∴異面直線直線A1B與AD1所成的角為∠AD1C,
∵△AD1C為等邊三角形,
∴∠AD1C=60°.
故選:C.

點(diǎn)評(píng) 本題考查兩異面直線所成角的求法,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-2x-8<0},$B=\left\{{x\left|{\frac{6-x}{x+6}≤0}\right.}\right\}$,C={x|x2-5x-m<0},若x∈A∩∁RB是x∈C的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若θ∈($\frac{π}{2}$,π),且cos2θ+cos($\frac{π}{2}$+2θ)=-$\frac{1}{5}$,則tanθ=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)$x∈[{-\frac{π}{3},\frac{π}{3}}]$時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點(diǎn)P(4,2),且它的漸近線與圓${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,則該雙曲線的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{4}=1$B.$\frac{x^2}{16}-\frac{y^2}{8}=1$C.$\frac{x^2}{8}-\frac{y^2}{12}=1$D.$\frac{x^2}{12}-\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(-1,6),$\overrightarrow$=(3,-2),則$\overrightarrow{a}$+$\overrightarrow$=(  )
A.(4,4)B.(2,4)C.(-2,4)D.(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在0°~180°范圍內(nèi),與-950°終邊相同的角是130°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{m}$=(2$\sqrt{3}$cosx,cosx),$\overrightarrow{n}$=(sinx,2cosx)(x∈R),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若f(A)=2,B=$\frac{π}{4}$,邊AB=3,求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.平行四邊形ABCD中,AB=3,AD=2,∠BAD=120°,P是平行四邊形ABCD內(nèi)一點(diǎn),且AP=1,若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則3x+2y的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案