分析 (1)曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,可得ρ2sin2θ+4ρsinθ-ρ2=0,利用互化公式可得直角坐標(biāo)方程.由直線l的參數(shù)方程,消去參數(shù)t可得普通方程,把拋物線焦點(diǎn)(0,1)代入即可得出.
(2)直線方程與拋物線方程聯(lián)立化為:x2-4x-4=0,利用根與系數(shù)的關(guān)系及其|MN|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.
解答 解:(1)曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,
可得ρ2sin2θ+4ρsinθ-ρ2=0,可得直角坐標(biāo)方程:y2+4y-(x2+y2)=0,即x2=4y.
直線l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=3+tsinα}\end{array}\right.$(t為參數(shù))消去參數(shù)t可得普通方程:y-3=(x-2)tanα.
由題意可知:直線經(jīng)過點(diǎn)(0,1),∴-2=-2tanα,可得tanα=1.
∴直線l的方程為:y-3=x-2,化為y=x+1.
(2)聯(lián)立$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=x+1}\end{array}\right.$,化為:x2-4x-4=0,
∴|MN|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2×[{4}^{2}-4×(-4)]}$=8.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程的方法、參數(shù)方程及其應(yīng)用、弦長公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com