分析 根據(jù)向量的運算性質(zhì)求出λ1和λ2的值,求和即可.
解答 解:如圖示:
,
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴$\overrightarrow{EC}$=$\frac{1}{4}$$\overrightarrow{BC}$=$\frac{1}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$+$\overrightarrow{EC}$
=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,
故λ1+λ2=1,
故答案為:1.
點評 本題考查平面向量的數(shù)量積運算,考查向量的加法與減法法則,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | y=log2$\frac{1}{x}$ | C. | y=-x | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3} | B. | {2,3,4} | C. | {0,2,4} | D. | {0,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?n∈N,2n≥1000 | B. | ?n∈N,2n>1000 | C. | ?n∈N,2n≤1000 | D. | ?n∈N,2n<1000 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 4+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com