1.已知命題p:“?x>0,有2x≥1成立”,則¬p為?x>0,有2x<1.

分析 直接利用全稱命題的否定是特稱命題,寫(xiě)出結(jié)果即可.

解答 解:全稱命題的否定是特稱命題,命題p:“?x>0,有2x≥1成立”,則¬p為?x>0,有2x<1成立.
故答案為:?x>0,有2x<1.

點(diǎn)評(píng) 本題考查全稱命題與特稱命題的否定,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列五種說(shuō)法正確的個(gè)數(shù)有( 。
①若A,B,C為三個(gè)集合,滿足A∪B=B∩C,則一定有A⊆C;
②函數(shù)的圖象與垂直于x軸的直線的交點(diǎn)有且僅有一個(gè);
③若A⊆U,B⊆U,則A=(A∩B)∪(A∩∁UB);
④若函數(shù)f(x)在[a,b]和[b,c]都為增函數(shù),則f(x)在[a,c]為增函數(shù).
A.1個(gè)B.2個(gè)C.3 個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.34B.55C.78D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)是定義在R上的奇函數(shù)恒滿足,且對(duì)任意實(shí)數(shù)x恒滿足f(x+2)=-f(x) 當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4],求f(x)的解析式;
(3)計(jì)算${∫}_{0}^{4}$f(x)dx 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2-bx+c,若f(-1)=f(3)且f(0)=3.
(1)求b、c的值;
(2)若函數(shù)g(x)是定義在R上的奇函數(shù),且滿足當(dāng)x>0時(shí),g(x)=f(x),試求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖所示,△ABC中,D為AC的中點(diǎn),AB=2,BC=$\sqrt{7}$,∠A=$\frac{π}{3}$.
(1)求cos∠ABC的值;
(2)求BD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知集合A={-1,2},B={x|mx=1},且A∪B=A,則m的值為0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.經(jīng)過(guò)點(diǎn)M(2$\sqrt{6}$,-2$\sqrt{6}$)且與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$有共同漸近線的雙曲線方程為( 。
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則實(shí)數(shù)a為( 。
A.-1B.0C.1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案