精英家教網 > 高中數學 > 題目詳情
已知F1、F2為雙曲線C:
x2
16
-
y2
20
=1
的左、右焦點,P在雙曲線上,且PF2=5,則cos∠PF1F2
 
分析:由雙曲線的方程可知2a=8,再由PF2=5,F1F2=2
16+20
,即可得到△F1PF2為直角三角形,進而可得到答案.
解答:解:由F1、F2為雙曲線C:
x2
16
-
y2
20
=1
的左、右焦點,P在雙曲線上,
則||PF1|-|PF2||=2a=8,
又由PF2=5,可得PF1=13,
在△F1PF2中,F1F2=2
16+20
=12,
可得△F1PF2為直角三角形,
故cos∠PF1F2=
F1F2
F1P
=
12
13

故答案為:=
12
13
點評:本題考查雙曲線的簡單性質,以及勾股定理,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知F1,F2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知F1,F2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是(  )
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖北省襄樊四中高二(上)期中數學試卷(文科)(解析版) 題型:選擇題

已知F1,F2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數學 來源:2012-2013學年陜西省榆林市神木中學高三(上)數學寒假作業(yè)1(理科)(解析版) 題型:選擇題

已知F1,F2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數學 來源:2012年陜西省西安市西工大附中高考數學四模試卷(文科)(解析版) 題型:選擇題

已知F1,F2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習冊答案