【題目】四棱錐中,側(cè)面是邊長為的正三角形,且與底面垂直,底面的菱形, 的中點, 的中點.

(1)求證: ;

(2)求與平面所成的角.

【答案】1見解析2.

【解析】試題分析:(1)(1)連結(jié)PQ、AQ.菱形ABCD中證出AQCD,結(jié)合正三角形PCDPQCD,可得CD⊥平面PAQ,而PA平面PAQ,即可證出PACD.
(2), 可得平面,連接,則與平面所成的角,利用邊長求解即可.

試題解析:

(1)連接, .

是正三角形,∴.

∵底面的菱形,∴.

又∵ 平面.

.

(2)設(shè)平面, , 平面.

又∵平面,平面平面, ,

由于的中點,∴的中點.

, .

由(1)可知 ,

平面.

連接,則與平面所成的角.

中, ,

, ..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,平面.

)求證:平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)),函數(shù),(為常數(shù),且).

(1)若函數(shù)有且只有1個零點,求的取值的集合.

(2)當(1)中的取最大值時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點,且離心率為.過點的直線與橢圓交于, 兩點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若點為橢圓的右頂點,探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面,且各棱長均相等, 分別為棱的中點.

(1)證明平面;

(2)證明平面平面;

(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的反函數(shù)為,若存在函數(shù)使得對函數(shù)定義域內(nèi)的任意都有,則稱函數(shù)為函數(shù)的“Inverse”函數(shù).

1)判斷下列哪個函數(shù)是函數(shù)的“Inverse”函數(shù)并說明理由.

;②;

2)設(shè)函數(shù)存在反函數(shù),證明函數(shù)存在唯一的“Inverse”函數(shù)的充要條件是函數(shù)的值域為;

3)設(shè)函數(shù)存在反函數(shù),函數(shù)的一個“Inverse”函數(shù),記,其中,若對函數(shù)定義域內(nèi)的任意都有,求所有滿足條件的函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義域為上的函數(shù),若對任意的實數(shù),都有:成立,當且僅當時取等號,則稱函數(shù)上的凸函數(shù),凸函數(shù)具有以下性質(zhì):對任意的實數(shù),都有:成立,當且僅當時取等號,設(shè)

1)求證:上的凸函數(shù)

2)設(shè),,利用凸函數(shù)的定義求的最大值

3)設(shè)三個內(nèi)角,利用凸函數(shù)性質(zhì)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺為宣傳本省,隨機對本省內(nèi)歲的人群抽取了n人,回答問題本省內(nèi)著名旅游景點有哪些統(tǒng)計結(jié)果如圖表所示

1)分別求出的值;

2)從第組回答正確的人中用分層抽樣的方法抽取6人,求第組每組各抽取多少人?

3)指出直方圖中,這組數(shù)據(jù)的中位數(shù)是多少(取整數(shù)值)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案