(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

(1) 所求橢圓方程 !7分
(2)設直線AC的方程: ,由, 得
點C,
同理 
 
 
要使 為常數(shù),  +(1-C)=0,
得C=1,                             ………15分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在圓上任取一點,過點軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知橢,的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點的直線(斜率存在時)與橢圓交于兩點,設為橢圓軸負半軸的交點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點到
左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

極坐標系中,以(9,)為圓心,9為半徑的圓的極坐標方程為(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在極坐標系中,過點且垂直于極軸的直線方程為(  )
A. .   B    C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線的交點
為鈍角.

(1)求曲線的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知過拋物線y2=2px(p>0)的焦點F的直線交拋物線于A(x1,y1),B(x2,y2)兩點.求證:(1)x1x2為定值;(2)為定值.

查看答案和解析>>

同步練習冊答案