直線x+a2y+1=0與直線(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,則|ab|的最小值為
 
分析:由題意知,兩直線的斜率之積等于-1,得到a、b的關(guān)系,代入|ab|的解析式變形后使用基本不等式,求得其最小值.
解答:解:由題意得-
1
a2
×
a2+1
b
=-1,∴a2 b=a2+1,b=
a2+1
a2
=1+
1
a2
,
∴|ab|=|a×(1+
1
a2
)|=|a+
1
a
|=|a|+|
1
a
|≥2,當(dāng)且僅當(dāng) a=1 或 a=-1時(shí),取等號.
故|ab|的最小值為2,
故答案為2.
點(diǎn)評:本題考查兩條直線垂直的性質(zhì),利用基本不等式求式子的最小值,注意檢驗(yàn)最小值取得的條件是否具備.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x+a2y+1=0與直線(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,則|ab|的最小值是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•煙臺三模)設(shè)a<0,兩直線x-a2y+1=0與(a2+1)x+by+3=0垂直,則ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+a2y+1=0與直線(a2+1)x-by+3=0互相垂直,a,b∈R,則|ab|的范圍是
[2,+∞)
[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案