設(shè)函數(shù)
(1)求函數(shù)y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非負(fù)實(shí)數(shù)a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,請(qǐng)說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當(dāng)x∈[0,]時(shí),求y=Tn(x)的解析式;
已知下面正確的命題:當(dāng)x∈[,](i∈N*,1≤i≤2n-1)時(shí),都有Tn(x)=Tn-x)恒成立.
②對(duì)于給定的正整數(shù)m,若方程Tm(x)=kx恰有2m個(gè)不同的實(shí)數(shù)根,確定k的取值范圍;若將這些根從小到大排列組成數(shù)列{xn}(1≤n≤2m),求數(shù)列{xn}所有2m項(xiàng)的和.
【答案】分析:(1)由,解出x的范圍,然后直接把代入分段函數(shù)解析式即可,
求y=sin(T(x))的解析式可把T(x)直接代入.
(2)分別寫出函數(shù)y=aT(x)和y=T(ax)的解析式,由解析式看出當(dāng)a=0時(shí)aT(x)=T(ax)恒成立,
而a>0時(shí),直接由aT(x)=T(ax)看出a取1時(shí)此等式成立;
(3)①當(dāng)x∈[0,]時(shí),x∈[0,),則在函數(shù)T(x)=2x的解析式中,依次取x=2x可求y=Tn(x)的解析式;
②根據(jù)題目給出的條件:當(dāng)x∈[,](i∈N*,1≤i≤2n-1)時(shí),都有Tn(x)=Tn-x)恒成立,
求出當(dāng)(i∈N,0≤i≤2n-1)時(shí)的Tn(x)的解析式,再由方程Tm(x)=kx求得當(dāng)時(shí),,那么,數(shù)列{xn}所有2m項(xiàng)的和可利用分組進(jìn)行求和.
解答:解:(1)由,得:(k∈Z),
,得:(k∈Z).
所以,函數(shù)=,

函數(shù)=,
所以,
(2)

當(dāng)a=0時(shí),則有a(T(x))=T(ax)=0恒成立.
當(dāng)a>0時(shí),當(dāng)且僅當(dāng)a=1時(shí)有a(T(x))=T(ax)=T(x)恒成立.
綜上可知當(dāng)a=0或a=1時(shí),a(T(x))=T(ax)恒成立;
(3)①當(dāng)時(shí),對(duì)于任意的正整數(shù)i∈N*,1≤i≤n-1,
都有
故有==2nx.
②由①可知當(dāng)時(shí),有,根據(jù)命題的結(jié)論可得,
當(dāng)時(shí),有,
故有=-2nx+2.
因此同理歸納得到,當(dāng)(i∈N,0≤i≤2n-1)時(shí),
=
對(duì)于給定的正整數(shù)m,當(dāng)時(shí),
解方程Tm(x)=kx得,
要使方程Tm(x)=kx在x∈[0,1]上恰有2m個(gè)不同的實(shí)數(shù)根,
對(duì)于任意i∈N,0≤i≤2m-1,必須恒成立,
解得,若將這些根從小到大排列組成數(shù)列{xn},
由此可得  (n∈N*,1≤i≤2m).
故數(shù)列{xn}所有2m項(xiàng)的和為:

=
=
點(diǎn)評(píng):本題考查了函數(shù)解析式的求解及常用方法,考查了函數(shù)恒成立問題,考查了數(shù)列的函數(shù)特性及數(shù)列的分組求和,特別是(3)中的②涉及到復(fù)雜條件下的函數(shù)解析式的求解及方程根的問題,需要學(xué)生有清晰的頭腦,考查了學(xué)生進(jìn)行復(fù)雜運(yùn)算的能力,此題是難度較大的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x+a3(a0,a1,a2,a3∈R),當(dāng)x=-1時(shí),f(x)取極大值
2
3
,且函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)試在函數(shù)y=f(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在[-
2
,
2
]
上;
(Ⅲ)設(shè)xn∈[
1
2
,1)
,ym∈(-
2
,-
2
3
2
]
,求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=1-
2x+1-n
x2+x+1
(n∈N*)的最小值為an,最大值為bn,又Cn=3(an+bn)-9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求
lim
n→∞
C1+C2+…+Cn
Cn
(n∈N*)的值
(3)設(shè)Sn=
1
C1
+
1
C2
+…+
1
Cn
,dn=S2n+1-Sn
,是否存在最小的整數(shù)m,使對(duì)任意的n∈N*都有dn
m
25
成立?若存在,求出m的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(1)求函數(shù)y=T(sin(數(shù)學(xué)公式x))和y=sin(數(shù)學(xué)公式T(x))的解析式;
(2)是否存在非負(fù)實(shí)數(shù)a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,請(qǐng)說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當(dāng)x∈[0,數(shù)學(xué)公式]時(shí),求y=Tn(x)的解析式;
已知下面正確的命題:當(dāng)x∈[數(shù)學(xué)公式,數(shù)學(xué)公式](i∈N*,1≤i≤2n-1)時(shí),都有Tn(x)=Tn數(shù)學(xué)公式-x)恒成立.
②對(duì)于給定的正整數(shù)m,若方程Tm(x)=kx恰有2m個(gè)不同的實(shí)數(shù)根,確定k的取值范圍;若將這些根從小到大排列組成數(shù)列{xn}(1≤n≤2m),求數(shù)列{xn}所有2m項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實(shí)數(shù)a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請(qǐng)說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當(dāng)時(shí),求y=T4(x)的解析式;
已知下面正確的命題:當(dāng)時(shí)(i∈N*,1≤i≤15),都有恒成立.
②若方程T4(x)=kx恰有15個(gè)不同的實(shí)數(shù)根,確定k的取值;并求這15個(gè)不同的實(shí)數(shù)根的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案