設(shè)數(shù)列{an}(n∈N*)是等差數(shù)列.若a2和a2012是方程4x2-8x+3=0的兩根,則數(shù)列{an]的前2013 項(xiàng)的和S2013=   
【答案】分析:由方程的根與系數(shù)關(guān)系可求,a2+a2012,然后由等差數(shù)列的性質(zhì)可知,a1+a2013=a2+a2012,代入等差數(shù)列的求和公式
解答:解:由題意可得,a2+a2012=2
由等差數(shù)列的性質(zhì)可知,a1+a2013=a2+a2012=2
=2013
故答案為:2013
點(diǎn)評:本題主要考查了等差數(shù)列性質(zhì)及等差數(shù)列的求和公式的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an} 前n項(xiàng)和Sn=
n(an+1)2
,n∈N*且a2=a
,
(1)求數(shù)列{an} 的通項(xiàng)公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3,g (x)=x+
x

(Ⅰ)求函數(shù)h (x)=f(x)-g (x)的零點(diǎn)個(gè)數(shù).并說明理由;
(Ⅱ)設(shè)數(shù)列{ an}(n∈N*)滿足a1=a(a>0),f(an+1)=g(an),證明:存在常數(shù)M,使得對于任意的n∈N*,都有an≤M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn,且Sn=2an-2,n∈N+
(Ⅰ)試求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
nan
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列,則x為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn=Aqn+B,則A+B=0是使{an}成為公比不等于1的等比數(shù)列的( 。

查看答案和解析>>

同步練習(xí)冊答案