【題目】隨著機(jī)構(gòu)改革的深入,各單位要減員增效,一家公司現(xiàn)有職員人(),且為偶數(shù),每人每年可創(chuàng)利5萬(wàn)元,據(jù)評(píng)估,每裁員1人,留守職員每人每年多創(chuàng)利潤(rùn)0. 1萬(wàn)元,但公司要付下崗職員每人每年3萬(wàn)元的生活費(fèi).
(1)假設(shè)公司裁員人,請(qǐng)寫出公司獲得的利益關(guān)于的解析式;
(2)公司正常的運(yùn)轉(zhuǎn)所需人數(shù)不得少于現(xiàn)有職員的,為了獲得最大效益,該公司應(yīng)當(dāng)裁員多少人.
【答案】(1);(2)當(dāng),裁員;當(dāng),裁員
【解析】
(1)設(shè)公司裁員人,公司獲得的利益為,得到,化簡(jiǎn)即可.
(2)因?yàn)?/span>,利用二次函數(shù)的性質(zhì)分類討論即可求出的最大值.
(1)設(shè)公司裁員人,公司獲得的利益為,由題知:
.
(2)因?yàn)?/span>,所以.
即函數(shù)的定義域?yàn)?/span>.
又因?yàn)?/span>,所以.
由(1)知,
對(duì)稱軸為
當(dāng)時(shí),即,
時(shí),取得最大值.
當(dāng),即,
時(shí),取得最大值.
又因?yàn)?/span>,綜上所述:
當(dāng), 時(shí),取得最大值,
當(dāng),時(shí),取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知直線與雙曲線交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求的值及B點(diǎn)坐標(biāo);
(2)結(jié)合圖形,直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸的直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面列聯(lián)表:
滿意 | 不滿意 | |
男顧客 | 40 | 10 |
女顧客 | 30 | 20 |
(1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿意的概率;
(2)能否有95%的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校欲在甲、乙兩店采購(gòu)某款投影儀,該投影儀原價(jià)為每臺(tái)2000元,甲店用如下方法促銷:買一臺(tái)單價(jià)為1950元,買二臺(tái)單價(jià)為1900元,每多買一臺(tái),則所買各臺(tái)單價(jià)均再減50元,但最低不能低于1200元;乙店一律按原售價(jià)的80%促銷,學(xué)校需要購(gòu)買臺(tái)投影儀,若在甲店購(gòu)買費(fèi)用為元,若在乙店購(gòu)買費(fèi)用記為.
(1)分別求出和的解析式;
(2)當(dāng)購(gòu)買臺(tái)時(shí),在哪家店買更省錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲同學(xué)家到乙同學(xué)家的途中有一座公園,甲同學(xué)家到公園的距離與乙同學(xué)家到公園的距離都是2km.如圖所示表示甲同學(xué)從家出發(fā)到乙同學(xué)家經(jīng)過的路程y(km)與時(shí)間x(min)的關(guān)系,下列結(jié)論正確的是( )
A.甲同學(xué)從家出發(fā)到乙同學(xué)家走了60min
B.甲從家到公園的時(shí)間是30min
C.甲從家到公園的速度比從公園到乙同學(xué)家的速度快
D.當(dāng)時(shí),y與x的關(guān)系式為
E.當(dāng)時(shí),y與x的關(guān)系式為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雙十一網(wǎng)購(gòu)狂歡節(jié)”源于淘寶商城(天貓)2009年11月11 日舉辦的促銷活動(dòng),當(dāng)時(shí)參與的商家數(shù)量和促銷力度均有限,但營(yíng)業(yè)額遠(yuǎn)超預(yù)想的效果,于是11月11日成為天貓舉辦大規(guī)模促銷活動(dòng)的固定日期.如今,中國(guó)的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購(gòu)物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用(單位:萬(wàn)元)和利潤(rùn)(單位:十萬(wàn)元)之間的關(guān)系,得到下列數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請(qǐng)用相關(guān)系數(shù)說明與之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明與之間具有線性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立與之間的回歸方程,并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的利潤(rùn)為多少(精確到0.1).
附參考公式:回歸方程中中和最小二乘估計(jì)分別為
,相關(guān)系數(shù)
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某射擊運(yùn)動(dòng)員每次擊中目標(biāo)的概率都是0.8,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),根據(jù)以下數(shù)據(jù)估計(jì)該運(yùn)動(dòng)員射擊4次,至少擊中3次的概率為( )
7527 0293 7140 9857
0347 4373 8636 6947
1417 4698 0371 6233
2616 8045 6011 3661
9597 7424 7610 4281
A.0.852B.0.8192C.0.8D.0.75
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com