如圖,已知P為矩形ABCD所在平面外一點(diǎn),M、N分別為AB、PC的中點(diǎn),求證:MN∥平面PAD.

答案:
解析:


提示:

利用向量知識(shí)來判斷直線和平面平行是一種很重要的判定線面平行的方法.這種方法與用線面平行的判定定理來證線面平行相比,更為簡(jiǎn)潔、實(shí)用,它省去需添加輔助線這一令多數(shù)學(xué)生頭疼的問題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)P為橢圓
x2
25
+
y2
9
=1
在第一象限內(nèi)的任意一點(diǎn),過橢圓的右頂點(diǎn)A和上頂點(diǎn)B分別作與y軸和x軸的平行線交于C,過P引BC、AC的平行線交AC于N,交BC于M,交AB于D、E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則S1:S2=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,如圖,已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)若PD與平面ABCD所成角為60°,且AD=2,AB=4,求點(diǎn)A到平面PED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大;
(2)在線段AC上找一點(diǎn)P,使PF與AD所成的角為60°,試確定點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面α∩β=?,A,B∈α,C,D∈?,ABCD為矩形,P∈B,PA⊥α,且PA=AD,M、N、F依次是AB、PC、PD的中點(diǎn).
(1)求證:四邊形AMNF為平行四邊形;
(2)求證:MN⊥AB
(3)求異面直線PA與MN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD的邊AB=2,BC=
2
,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),沿AF、EC分別把三角形ADF和三角形EBC折起,使得點(diǎn)D和點(diǎn)B重合,記重合后的位置為點(diǎn)P.
(1)求證:平面PCE⊥平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點(diǎn),求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案