8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

分析 (1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數(shù)),利用平方關(guān)系可得普通方程.直線l的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$,展開可得:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=2$\sqrt{2}$,利用互化公式可得直角坐標(biāo)方程..
(2)利用點到直線的距離公式可得圓心(-2,0)到直線的距離d,可得點P到直線l的距離d的取值范圍是[d-r,d+r].

解答 解:(1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數(shù)),
利用平方關(guān)系可得:(x+2)2+y2=10.
直線l的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$,
展開可得:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=2$\sqrt{2}$,可得直角坐標(biāo)方程:x+y-4=0;
(2)圓心(-2,0)到直線的距離d=$\frac{|-2+0-4|}{\sqrt{2}}$=3$\sqrt{2}$.
∴點P到直線l的距離d的取值范圍是$[3\sqrt{2}-\sqrt{10},3\sqrt{2}+\sqrt{10}]$.

點評 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給定正奇數(shù)n,數(shù)列{an}:a1,a2,…,an是1,2,…,n的一個排列,定義E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|為數(shù)列{an}:a1,a2,…,an的位差和.
(Ⅰ)當(dāng)n=5時,則數(shù)列{an}:1,3,4,2,5的位差和為4;
(Ⅱ)若位差和E(a1,a2,…,an)=4,則滿足條件的數(shù)列{an}:a1,a2,…,an的個數(shù)為$\frac{{({n-2})({n+3})}}{2}$.;(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓$C:{(x+\sqrt{3})^2}+{y^2}=16,點A(\sqrt{3},0)$,Q是圓上一動點,AQ的垂直平分線交CQ于點M,設(shè)點M的軌跡為E.
(I)求軌跡E的方程;
(II)過點A作圓x2+y2=1的切線l交軌跡E于B,D兩點,求|BD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=sinx-cosx+x+1.
(Ⅰ)當(dāng)x∈[0,2π],求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若函數(shù)y=f(x)-ax在[0,π]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的離心率為$e=\frac{1}{2}$,直線x+2y-1=0經(jīng)過橢圓的一個焦點;
(1)求橢圓的方程;
(2)過橢圓右焦點F的直線l(與坐標(biāo)軸均不垂直)交橢圓于A、B兩點,點B關(guān)于x軸的對稱點為P;問直線AP是否恒過定點?若是,求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線y2=-6x的焦點為F,點M,N在拋物線上,且滿足$\overrightarrow{FM}=k\overrightarrow{FN}(k≠0)$,則|MN|的最小值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線2x-y+1=0與圓C:(x-1)2+(y-1)2=1相交于A、B兩點,則弦AB的長為$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線l被圓x2+y2=4所截得的弦長不小于$2\sqrt{3}$,則l與下列曲線一定有公共點的是( 。
A.$\frac{x^2}{2}+{y^2}=1$B.(x-1)2+y2=1C.y=x2D.x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x1,x2(x1<x2)是函數(shù)f(x)=lnx-$\frac{1}{x-1}$的兩個零點,若a∈(x1,1),b∈(1,x2),則(  )
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)>0,f(b)<0D.f(a)<0,f(b)>0

查看答案和解析>>

同步練習(xí)冊答案