(如圖1)在平面四邊形中,為中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).
(1)求三棱錐的體積;
(2)在線(xiàn)段PC上是否存在一點(diǎn)M,使直線(xiàn)與直線(xiàn)所成角為?若存在,求出線(xiàn)段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(1);(2)存在,.
解析試題分析:本題考查空間兩條直線(xiàn)的位置關(guān)系、異面直線(xiàn)所成的角、直線(xiàn)與平面垂直和平行等基礎(chǔ)知識(shí),考查用空間向量解決立體幾何中的問(wèn)題,考查空間想象能力、運(yùn)算能力和推理論證能力.第一問(wèn),先用三角形中位線(xiàn),證,所以利用線(xiàn)面平行的判定定理,得出平面,同理:平面,把與的夾角轉(zhuǎn)化為與的夾角,利用面面平行,轉(zhuǎn)化到平面的距離為到平面的距離,易得出距離為1,最后求轉(zhuǎn)化后的;第二問(wèn),由已知建立空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)坐標(biāo),用反證法,先假設(shè)存在,假設(shè),求出向量和坐標(biāo),用假設(shè)成立的角度,列出夾角公式,解出,如果有解即存在,否則不存在,并可以求出的坐標(biāo)及.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/1/1oggo3.png" style="vertical-align:middle;" />分別為的中點(diǎn),所以.又平面,平面,所以平面,同理:平面.
試題解析:(1)∵,∴平面.同理:,∴平面,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/1/1oggo3.png" style="vertical-align:middle;" />分別為的中點(diǎn),所以平面.
同理:平面,且,
∴與的夾角等于與的夾角(設(shè)為)
易求. 4分
∵平面平面,∴到平面的距離即到平面的距離,過(guò)作的垂線(xiàn),垂足為,則為到平面的距離.
, 7分
(2)假設(shè)在線(xiàn)段存在一點(diǎn),使直線(xiàn).取的中點(diǎn),連,設(shè)
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側(cè)面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.
(1)若點(diǎn)在線(xiàn)段上,問(wèn):無(wú)論在的何處,是否都有?請(qǐng)證明你的結(jié)論;
(2)求二面角的平面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是⊙的一條切線(xiàn),切點(diǎn)為,都是⊙的割線(xiàn),已知.
(1)證明:;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直角梯形所在的平面垂直于平面,,,.
(Ⅰ)點(diǎn)是直線(xiàn)中點(diǎn),證明平面;
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面;
(II)試問(wèn)點(diǎn)在線(xiàn)段上什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,和是兩個(gè)邊長(zhǎng)為的正三角形,,為的中點(diǎn),為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com