已知z為虛數(shù),為實(shí)數(shù).
(1)若z-2為純虛數(shù),求虛數(shù)z;
(2)求|z-4|的取值范圍.
【答案】分析:(1)設(shè)z=x+yi(x,y∈R,y≠0),根據(jù)z-2為純虛數(shù)求得x的值,再由為實(shí)數(shù)求出y的值,即得虛數(shù)z.
(2)由為實(shí)數(shù)且y≠0 可得(x-2)2+y2=9,由此求得x的范圍,根據(jù)復(fù)數(shù)的模的定義把要求的式子可化為
,從而得到的范圍.
解答:解:(1)設(shè)z=x+yi(x,y∈R,y≠0),則z-2=x-2+yi,
由z-2為純虛數(shù)得x=2,∴z=2+yi,…(2分)
則 ,…(4分)
,y=±3,…(6分)   所以z=2+3i或z=2-3i.…(7分)
(2)∵,
,∵y≠0,∴(x-2)2+y2=9,…(10分)
由(x-2)2<9得x∈(-1,5),…(12分)
=.…(15分)
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的除法,復(fù)數(shù)求模,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知z為虛數(shù),z+
9z-2
為實(shí)數(shù).
(1)若z-2為純虛數(shù),求虛數(shù)z;
(2)求|z-4|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知z為虛數(shù),z+
9
z-2
為實(shí)數(shù),若z-2為純虛數(shù),求虛數(shù)z;
(2)已知w=z+i(z∈C),且
z-2
z+2
為純虛數(shù),求M=|w+1|2+|w-1|2的最大值及M取最大值時(shí)w的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z為虛數(shù),且|2z+15|=
3
|z+10|

(1)求|z|;(2)設(shè)u=(3-i)z,若u在復(fù)平面上的對(duì)應(yīng)點(diǎn)在第二、四象限的角平分線上,求復(fù)數(shù)z;(3)若z2+2
.
z
為實(shí)數(shù),且z恰好為實(shí)系數(shù)方程x2+px+q=0的兩根,試寫出此方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市泰興三中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知z為虛數(shù),為實(shí)數(shù),若z-2為純虛數(shù),求虛數(shù)z;
(2)已知w=z+i(z∈C),且為純虛數(shù),求M=|w+1|2+|w-1|2的最大值及M取最大值時(shí)w的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案