對(duì)任意實(shí)數(shù)x和整數(shù)n,已知f(sinx)=sin(4n+1)x,求f(cosx).

答案:略
解析:

解:由f(sinx)=sin(4n1)x對(duì)任意實(shí)數(shù)均成立,且,得

利用誘導(dǎo)公式及函數(shù)的意義求解.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為15、公差為整數(shù)的等差數(shù)列,前n項(xiàng)的和是Sn,S11≥0,S12<0,Sn的最大值是S,函數(shù)y=f(x)滿足f(1+x)=f(5-x)對(duì)任意實(shí)數(shù)x都成立,且y=f(x) 的所有零點(diǎn)和恰好為S,則y=f(x)的零點(diǎn)的個(gè)數(shù)為
15個(gè)
15個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•長(zhǎng)寧區(qū)一模)設(shè)二次函數(shù)f(x)=(k-4)x2+kx
 (k∈R)
,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)證明:當(dāng)an∈(0,
1
2
)
時(shí),數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
(3)已知a1=
1
3
,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+ax+b(a,b為實(shí)常數(shù)),數(shù)列{an},{bn}定義為:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).已知不等式|f(x)≤2x2+4x-30|對(duì)任意實(shí)數(shù)x均成立.
(1)求實(shí)數(shù)a,b的值;
(2)若將數(shù)列{bn}的前n項(xiàng)和與乘積分別記為Sn和Tn,證明:對(duì)任意正整數(shù)n,2n+1Tn+Sn為定值;
(3)證明:對(duì)任意正整數(shù)n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:038

對(duì)任意實(shí)數(shù)x和整數(shù)n,已知f(sinx)=sin(4n+1)x,求f(cosx).

查看答案和解析>>

同步練習(xí)冊(cè)答案