分析:(1)根據(jù)等式求出n+1時,2
n+1•a
1•a
2…a
n•a
n+1=A
2n+2n+1和2
n•a
1•a
2•…•a
n=A
2nn,兩式相除得到數(shù)列a
n的通項公式;
(2)把a
n代入到b
n=a
n+2
n+1中得到b
n的通項公式,代入得到c
n=b
nsin(nπ-
)的通項公式,分別表示出c
n的各項,討論當n為奇數(shù)和偶數(shù)時表示出c
n的前n項和,化簡求出即可.
解答:解:(1)數(shù)列{a
n}滿足:2
n•a
1•a
2…a
n=A
2nn,2
n+1•a
1•a
2…a
n•a
n+1=A
2n+2n+1兩式相除得:2a
n+1=
(2n+2)(2n+1)2n(2n-1)(n+2) |
2n(2n-1)(2n-2)(n+2)(n+1) |
=
=4n+2
所以數(shù)列通項公式:a
n=2n-1
(2)由a
n=2n-1,bn=2
n+2n,
b
nsin(nπ-
)=(2
n+2n)sin(nπ-
)=(-1)
n+1(2
n+2)
T
n=[2-2
2+2
3-2
4++(-1)
n+1•2n]+2[1-2+3-4++(-1)
n+1•n]
當n為偶數(shù)時,
T
n=
-2
•=-+-n當n為奇數(shù)時,
T
n=
+2(1+) =++nT
n=
點評:考查學生會根據(jù)題意求等差數(shù)列的通項公式,會分情況討論并利用等比、等差數(shù)列求和公式求數(shù)列的和.