已知函數(shù)y=f(x)=ln(kx+),(k>0)在x=1處取得極小值.
(1)求k的值;
(2)若f(x)在(,f())處的切線方程式為y=g(x),求證當x>0時,曲線y=f(x)不可能在直線y=g(x)的下方.
【答案】分析:(1)對函數(shù)求導,由已知得;
(2)由(1)知,則,即可得到y(tǒng)=f(x)在的切線方程,
將問題轉化為f(x)≥g(x)在(0,+∞)恒成立,
,求出,故ϕ(x)≥0即f(x)≥g(x)在(0,+∞)恒成立,得證.
解答:解:(1)
由已知得.…(3分)
(2)當k=1時,
此時y=f(x)在(0,1)單調遞減,在(1,+∞)單調遞增…(5分)
由于,,
則y=f(x)在的切線方程為,即…(8分)
當x>0時,曲線y=f(x)不可能在直線y=g(x)的下方?f(x)≥g(x)在(0,+∞)恒成立,

,
即ϕ(x)≥0即f(x)≥g(x)在(0,+∞)恒成立,
所以當x>0時,曲線y=f(x)不可能在直線y=g(x)的下方…(13分)
點評:本題考查函數(shù)導函數(shù)的應用,主要是求最值問題,本題解題的關鍵是對于不等式成立,只要用函數(shù)的最值來整理就使得問題解題的方向非常明確.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關于x軸的對稱圖形一定過點( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案