“?x∈R,x2-x+1≤0”的否定是
?x∈R,x2-x+1>0
?x∈R,x2-x+1>0
分析:根據(jù)特稱命題的否定規(guī)則:將量詞改為任意,結論否定,即可得到其否定.
解答:解:將量詞改為任意,結論否定,可得命題“?x∈R,x2-x+1≤0”的否定
是:“?x∈R,x2-x+1>0”
故答案為:“?x∈R,x2-x+1>0”
點評:本題考查特稱命題的否定,解題的關鍵是掌握特稱命題的否定規(guī)則,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

15、給出下列四個結論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結論的序號是
①④
(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•馬鞍山模擬)給出下列四個結論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f'(x)>0,g'(x)>0,則x<0時,f'(x)>g'(x).
其中正確結論的序號是
①④
①④
(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:馬鞍山模擬 題型:填空題

給出下列四個結論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
a
b
=-2

④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f'(x)>0,g'(x)>0,則x<0時,f'(x)>g'(x).
其中正確結論的序號是______(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2009年山東省濱州市高考數(shù)學一模試卷(理科)(解析版) 題型:填空題

給出下列四個結論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結論的序號是    (填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省高考60天沖刺訓練數(shù)學試卷05(理科)(解析版) 題型:解答題

給出下列四個結論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個零點;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確結論的序號是    (填上所有正確結論的序號)

查看答案和解析>>

同步練習冊答案