在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點,已知∠BAC=
π
2
,AB=2,AC=2
3
,PA=2,異面直線BC與AD所成的角的余弦值
 
分析:通過建立空間直角坐標系,利用向量的夾角公式即可得出.
解答:解:如圖所示,建立空間直角坐標系.精英家教網(wǎng)
則B(2,0,0),C(0,2
3
,0),A(0,0,0),P(0,0,2),D(0,
3
,1)

AD
=(0,
3
,1),
BC
=(-2,2
3
,0)

cos<
AD
,
BC
=
AD
BC
|
AD
| |
BC
|
=
6
4
16
=
3
4

故答案為:
3
4
點評:本題考查了通過建立空間直角坐標系利用向量的夾角公式求異面直線的夾角的方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求證:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,AB=3,BC=4,AC=5,PA=1  面PAB⊥面CAB,面PAC⊥面CAB,則三棱錐P-ABC的體積是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在三棱錐P-ABC中,PA⊥平面ABC.
(1)若∠BAC=
π3
,AB=AC=PA=2,E、F分別為棱AB、PC的中點,求線段EF的長;
(2)求證:“∠PBC=90°”的充要條件是“平面PBC⊥平面PAB”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•蚌埠二模)如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分別為AB,AC中點.
(I)求證:DE∥面PBC;
(II)求證:AB⊥PE;
(III)求三棱錐B-PEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖所示.
(1)證明:AD⊥平面PBC;
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

同步練習冊答案