數(shù)列滿足(n2).

(1)若,求證為等比數(shù)列;

(2)求的通項公式.

答案:略
解析:

解:(1)

.即(n2),

為以-1為首項,公比為的等比數(shù)列.

(2)(1),


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*).
(Ⅰ)試求λ、μ的值,使得數(shù)列{an+λn2+μn}為等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{bn}滿足:bn=
1
an+n-2n-1
,Sn為數(shù)列{bn}的前n項和,證明:n≥2時,
6n
(n+1)(2n+1)
Sn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*).
(1)求a2,a3的值;
(2)試求λ、μ的值,使得數(shù)列{ann2+μn}為等比數(shù)列;
(3)設(shè)數(shù)列{bn}滿足:bn=
1
an+n-2n-1
,Sn為數(shù)列{bn}的前n項和.證明:n≥2時,
6n
(n+1)(2n+1)
Sn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an=n2+λn(n∈N*),且滿足a1<a2<a3<---<an<k,則實數(shù)λ的取值范圍是
λ>-3
λ>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)已知向量
a
,
b
滿足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函數(shù),f(x)=
a
b
(x∈R).
(I)將f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知數(shù)列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n項和S2n

查看答案和解析>>

同步練習(xí)冊答案