7.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

分析 求出圓心到直線的距離d的最大值,即可求出所求圓的標(biāo)準(zhǔn)方程.

解答 解:圓心(1,0)到直線mx-y-2m-1=0的距離d=$\frac{|m-2m-1|}{\sqrt{{m}^{2}+1}}=\sqrt{1+\frac{2}{m+\frac{1}{m}}}$≤$\sqrt{2}$,
∴m=1時(shí),圓的半徑最大為$\sqrt{2}$,
∴所求圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2.
故選:C.

點(diǎn)評 本題考查圓的標(biāo)準(zhǔn)方程,考查點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2為雙曲線C:x2-2y2=1的左右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=120°,則${S_{△P{F_1}{F_2}}}$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某工廠在兩年內(nèi)生產(chǎn)產(chǎn)值的月增長率都是a,則第二年某月的生產(chǎn)產(chǎn)值與第一年相應(yīng)月相比增長了(1+a)12-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A,B,C三點(diǎn)不共線,點(diǎn)O為平面ABC外的一點(diǎn),則下列條件中,能得到P∈平面ABC的是(  )
A.$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$B.$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$
C.$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$D.$\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)M($\sqrt{3}$,$\sqrt{2}$),且離心率為$\frac{\sqrt{3}}{3}$,直線l過點(diǎn)P(3,0),且與橢圓C交于不同的A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)在E上.
(1)求橢圓E的方程;
(2)過P作x軸的垂線交x軸于Q,過Q的直線交橢圓E于A,B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,在平面四邊形ABCD中,AB=1,BC=2,△ACD為正三角形,則△BCD面積的最大值為(  )
A.2B.$\sqrt{5}$C.$\sqrt{2}+1$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知M,n分別是函數(shù)f(x)=ax5-bx+1(ab≠0)的最大值,最小值,則M+n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3=4,S3=7,則S6的值為( 。
A.31B.32C.63或$\frac{133}{27}$D.64

查看答案和解析>>

同步練習(xí)冊答案