在數(shù)列{an}中,“an=cqn(q≠0且c∈R)”是“{an}是等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
在數(shù)列{an}中,由“an=cqn(q≠0且c∈R)”,不能推出“{an}是等比數(shù)列”,例如 an=0時,故充分性不成立.
由“{an}是等比數(shù)列”,設公比為q,則 an=a1•qn-1,故可得,“an=cqn(q≠0且c∈R)”,故必要性成立.
綜上可得,“an=cqn(q≠0且c∈R)”是“{an}是等比數(shù)列”的 必要不充分條件,
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1、已知點(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1n
)
,則an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項an=
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中a1=
1
2
,a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出數(shù)列{an}的通項公式;
(2)設bn=
anan+1
an
+
an+1
,求證:對?n∈N*,都有b1+b2+…bn
3n-1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設S2009為其前2009項的和,則當數(shù)列{xn}的周期為3時,S2009=
1339+a
1339+a

查看答案和解析>>

同步練習冊答案