10.某企業(yè)生產(chǎn)一種機(jī)器的固定成本為0.5萬元,但每生產(chǎn)1百臺(tái)時(shí),又需可變成本(即另增加投入)0.25萬元.市場對(duì)此商品的年需求量為5百臺(tái),銷售的收入(單位:萬元)函數(shù)為:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺(tái)).
(1)將利潤表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時(shí),企業(yè)所得利潤最大?

分析 (1)利潤函數(shù)G(x)=銷售收入函數(shù)F(x)-成本函數(shù)R(x),x是產(chǎn)品售出的數(shù)量(產(chǎn)量),代入解析式即可;
(2)由利潤函數(shù)是二次函數(shù),可以利用二次函數(shù)的性質(zhì)求出函數(shù)取最大值時(shí)對(duì)應(yīng)的自變量x的值.

解答 解:(1)依題意,得:
利潤函數(shù)G(x)=F(x)-R(x)=(5x-$\frac{1}{2}$x2)-(0.5+0.25x)=-$\frac{1}{2}$x2+4.75x-0.5  (其中0≤x≤5);
(2)利潤函數(shù)G(x)=-$\frac{1}{2}$x2+4.75x-0.5(其中0≤x≤5),
當(dāng)x=4.75時(shí),G(x)有最大值;
所以,當(dāng)年產(chǎn)量為475臺(tái)時(shí),工廠所得利潤最大.

點(diǎn)評(píng) 本題在正確理解利潤函數(shù)的基礎(chǔ)上,運(yùn)用二次函數(shù)的性質(zhì),解決實(shí)際應(yīng)用問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)+g(x)=2x,則有( 。
A.f(3)<g(0)<f(4)B.g(0)<f(4)<f(3)C.g(0)<f(3)<f(4)D.f(3)<f(4)<g(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知雙曲線C以原點(diǎn)O為中心,以坐標(biāo)軸為對(duì)稱軸,過(3,$2\sqrt{6}$)和(-2,-3)兩點(diǎn).
(1)求雙曲線C的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線l過雙曲線C的右焦點(diǎn),并且與雙曲線交于A、B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\frac{1}{x-a}$-$\frac{λ}{x-2}$,其中a,λ∈R.
(I)當(dāng)a=4,λ=1時(shí),判斷函數(shù)f(x)在(3,4)上的單調(diào)性,并說明理由;
(II)記A1={(x,y)|x>0,y>0},A2={(x,y)|x<0,y>0},A3={(x,y)|x<0,y<0},A4={(x,y)|x>0,y<0}.M={(x,y)|y=f(x)},若對(duì)任意的λ∈(1,3)恒有M∩Ai≠∅(i=1,2,3,4)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}滿足a1=2,an+1=$\frac{{2}^{n+1}{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$(n∈N+).
(1)設(shè)bn=$\frac{{2}^{n}}{{a}_{n}}$,求數(shù)列{bn}的通項(xiàng)公式bn;
(2)設(shè)cn=$\frac{1}{n(n+1){a}_{n+1}}$,數(shù)列{cn}的前n項(xiàng)和為Sn,求出Sn并由此證明:$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S3=0,Sn=5,數(shù)列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016項(xiàng)的和為-$\frac{2016}{4031}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)生在假期進(jìn)行某種小商品的推銷,他利用所學(xué)知識(shí)進(jìn)行了市場調(diào)查,發(fā)現(xiàn)這種商品當(dāng)天的市場價(jià)格與他的進(jìn)貨量(件)加上20成反比.已知這種商品每件進(jìn)價(jià)為2元.他進(jìn)100件這種商品時(shí),當(dāng)天賣完,利潤為100元.若每天的商品都能賣完,求這個(gè)學(xué)生一天的最大利潤是多少?獲得最大利潤時(shí)每天的進(jìn)貨量是多少件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程x2+y2-2x+m=0表示一個(gè)圓,則x的范圍是( 。
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某工廠2015年生產(chǎn)某產(chǎn)品2萬件,計(jì)劃從2016年開始每年比上一年增產(chǎn)20%,從哪一年開始這家工廠生產(chǎn)這種產(chǎn)品的年產(chǎn)量超過6萬件(已知lg2=0.3010,lg3=0.4771)( 。
A.2019年B.2020年C.2021年D.2022年

查看答案和解析>>

同步練習(xí)冊(cè)答案