【題目】江蘇省南通市2018屆高三最后一卷 --- 備用題數(shù)學(xué)試題已知函數(shù),其中.

(1)當(dāng)時(shí),求函數(shù)處的切線方程;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),求的取值范圍;

(3)若不等式對任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) .

(2) .

(3) .

【解析】

(1)首先將代入函數(shù)解析式,求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的切線的斜率,利用點(diǎn)斜式寫出直線的方程,化簡求得結(jié)果;

(2)求出函數(shù)的導(dǎo)數(shù),利用函數(shù)存在兩個(gè)極值點(diǎn),是方程的兩個(gè)不等正根,韋達(dá)定理得到關(guān)系,將化為關(guān)于的函數(shù)關(guān)系式,利用導(dǎo)數(shù)求得結(jié)果;

(3)將恒成立問題應(yīng)用導(dǎo)數(shù)來研究,分類討論,求得結(jié)果.

(1)當(dāng)時(shí),,故,

,故

所以函數(shù)處的切線方程為

(2)由,可得

因?yàn)楹瘮?shù)存在兩個(gè)極值點(diǎn),所以是方程的兩個(gè)不等正根,

的兩個(gè)不等正根為

所以,即

所以

,故,上單調(diào)遞增,

所以

得取值范圍是

(3)據(jù)題意,對任意的實(shí)數(shù)恒成立,

對任意的實(shí)數(shù)恒成立.

,則

①若,當(dāng)時(shí),,故符合題意;

②若

(i)若,即,則,上單調(diào)贈

所以當(dāng)時(shí),,故符合題意;

(ii)若,即,令,得(舍去),

,當(dāng)時(shí),,上單調(diào)減;

當(dāng)時(shí),,上單調(diào)遞增,

所以存在,使得,與題意矛盾,

所以不符題意.

③若,令,得

當(dāng)時(shí),,上單調(diào)增;當(dāng)時(shí),,

上單調(diào)減.

首先證明:

要證:,即要證:,只要證:

因?yàn)?/span>,所以,故

所以

其次證明,當(dāng)時(shí),對任意的都成立

,則,故上單調(diào)遞增,所以,則

所以當(dāng)時(shí),對任意的都成立

所以當(dāng)時(shí),

,與題意矛盾,故不符題意,

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線C:y2=2px的焦點(diǎn)為F,拋物線上一定點(diǎn)Q(1,2).

(1)求拋物線C的方程及準(zhǔn)線l的方程;
(2)過焦點(diǎn)F的直線(不經(jīng)過Q點(diǎn))與拋物線交于A,B兩點(diǎn),與準(zhǔn)線l交于點(diǎn)M,記QA,QB,QM的斜率分別為k1 , k2 , k3 , 問是否存在常數(shù)λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場售價(jià)為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽(yù),這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊(duì)參賽,每隊(duì)3人,每人回答一個(gè)問題,答對者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對的概率均為,乙隊(duì)中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.

(1)分別求甲隊(duì)總得分為0分;2分的概率;

(2)求甲隊(duì)得2分乙隊(duì)得1分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國擁有世界上最大的快遞市場.某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(不足,按計(jì)算)需再收5.

該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

公司對近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;

(2)①估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,其余的用作其他費(fèi)用.目前前臺有工作人員3人,每人每天攬件不超過150件,日工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1﹣1=an(an﹣1)(n∈N*)且Sn= + +…+ ,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是(
A.{0,1,2}
B.{0,1,2,3}
C.{1,2}
D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1已知fx+1=x2+4x+1,求fx的解析式.

2已知fx是一次函數(shù),且滿足3fx+1-fx=2x+9.求fx

3已知fx滿足2fx+f =3x,求fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公共汽車線路收支差額元與乘客量的圖象.由于目前本條線路虧損,公司有關(guān)人員提出了兩種扭虧為贏的方案,根據(jù)圖上點(diǎn)、點(diǎn)以及射線上的點(diǎn)的實(shí)際意義,用文字說明圖方案是______,圖方案是______

查看答案和解析>>

同步練習(xí)冊答案