時,一次函數(shù)時的單調(diào)性是怎樣的?利用函數(shù)單調(diào)性的定義證明你的結(jié)論.

    時,上的減函數(shù),時,上的增函數(shù).


解析:

任取,且

由題設(shè)有,當時,,所以

于是,所以上的減函數(shù).

同理可證,時,上的增函數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當a=3、b=2時函數(shù)f(x)與g(x)的圖象交于不同的兩點A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•虹口區(qū)二模)已知一次函數(shù)f(x)=ax+b,二次函數(shù)g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)證明:y=f(x)與y=g(x)圖象有兩個不同的交點A和B
(2)若A1、B1分別是點A、B在x軸上的射影,求線段A1B1長度的取值范圍
(3)證明:當x≤-
3
時,恒有f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(-1,0),B(1,0),AE∥BF,且半圓與y軸的交點D在射線AE的反向延長線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當一次函數(shù)y=x+b的圖象與圖形C恰好只有一個公共點時,寫出b的取值范圍;當一次函數(shù)y=x+b的圖象與圖形C恰好只有兩個公共點時,寫出b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省宣城市寧國中學高一(上)第二次段考數(shù)學試卷(解析版) 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c∈R.且滿足a>b>c,f(1)=0.
(Ⅰ)證明:當a=3、b=2時函數(shù)f(x)與g(x)的圖象交于不同的兩點A,B.
(Ⅱ)若函數(shù)F(x)=f(x)-g(x)在[2,3]上的最小值是9,最大值為21,試求a,b的值.

查看答案和解析>>

同步練習冊答案