已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當(dāng)時,曲線上總存在相異兩點(diǎn)、,使得過、點(diǎn)處的切線互相平行,求的取值范圍.
(1) ,
(2) 的取值范圍為.
【解析】
試題分析:(1) 求函數(shù)的導(dǎo)數(shù),對討論用導(dǎo)函數(shù)的正負(fù)判斷單調(diào)性;(2)在處導(dǎo)數(shù)相等得,由不等式性質(zhì)可得恒成立,所以,對恒成立,令,求其最小值,即的最大值.
試題解析:(1) 1分
5分
(2)由題意,可得(,且)
即 7分
∵,由不等式性質(zhì)可得恒成立,又
∴ 對恒成立
令,
則對恒成立
∴在上單調(diào)遞增,∴ 11分
故 12分
從而“對恒成立”等價于“”
∴的取值范圍為 13分
考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)性;2.導(dǎo)數(shù)的幾何意義;3.利用導(dǎo)數(shù)求函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省瓊海市嘉積中學(xué)高一(下)質(zhì)量監(jiān)測數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com