數(shù)列,,,…中,有序數(shù)對(duì)(a,b)可以是   
【答案】分析:遇到這樣的數(shù)列問題,觀察數(shù)列中項(xiàng)的結(jié)構(gòu)特點(diǎn),若是分?jǐn)?shù),要觀察分子和分母之間的關(guān)系,分子和分母同項(xiàng)數(shù)之間的關(guān)系,得到各項(xiàng)具有的公共的特點(diǎn).
解答:解:∵觀察數(shù)列的特點(diǎn)發(fā)現(xiàn)分母上的數(shù)字比分子上的被開方數(shù)小2,
∴從上面的規(guī)律可以看出,
解上式得
故答案為:(,-
點(diǎn)評(píng):本題可以培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力,通過本題的練習(xí),提高學(xué)生分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列a,b,c是各項(xiàng)均為正數(shù)的等差數(shù)列,公差為d(d>0).在a,b之間和b,c之間共插入n個(gè)實(shí)數(shù),使得這n+3個(gè)數(shù)構(gòu)成等比數(shù)列,其公比為q.
(1)求證:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n個(gè)數(shù)中,有s個(gè)位于a,b之間,t個(gè)位于b,c之間,且s,t都為奇數(shù),試比較s與t的大小,并求插入的n個(gè)數(shù)的乘積(用a,c,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,有a6+a7+a8=12,則此數(shù)列的前13項(xiàng)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)在數(shù)列{dn}中,d1=1,且滿足
dn
dn+1
=an+1
(n∈N*),求表中前n行所有數(shù)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項(xiàng)a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{cn}對(duì)任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求證:數(shù)列{bn}中的任意一項(xiàng)總可以表示成其他兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在數(shù)列11,111,1111…中


  1. A.
    有完全平方數(shù)
  2. B.
    沒有完全平方數(shù)
  3. C.
    有偶數(shù)
  4. D.
    沒有3的倍數(shù)

查看答案和解析>>

同步練習(xí)冊答案