【題目】已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點,且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m的值;
【答案】(1);(2);(3).
【解析】
試題分析:(1)圓的方程要滿足;或配成圓的標(biāo)準(zhǔn)方程,;
(2) 利用弦心距公式,先求點到面的距離,利用 ,求出的值;
(3)設(shè),若,那么,利用直線方程與圓的方程聯(lián)立,得到根與系數(shù)的關(guān)系式,代入后,求得的值.
試題解析:解:(1)(1)方程x2+y2-2x-4y+m=0,可化為
(x-1)2+(y-2)2=5-m,
∵此方程表示圓,
∴5-m>0,即m<5.
(2) 圓的方程化為 ,圓心 C(1,2),半徑 ,
則圓心C(1,2)到直線的距離為
由于,則,有,
得.
(3)
消去x得(4-2y)2+y2-2×(4-2y)-4y+m=0,
化簡得5y2-16y+m+8=0.
設(shè)M(x1,y1),N(x2,y2),則
①②
由OM⊥ON得y1y2+x1x2=0
即y1y2+(4-2y1)(4-2y2)=0,
∴16-8(y1+y2)+5y1y2=0.
將①②兩式代入上式得
16-8×+5×=0,
解之得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,設(shè),求證:對任意的,;
(2)當(dāng)時,若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<)的最小正周期是a1,且函數(shù)的圖象關(guān)于直線x=對稱。
(Ⅰ)求函數(shù)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對應(yīng)角A,B,C,a=4,b=4,∠A=30°,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機(jī)抽樣)從甲、乙兩組共抽取4名工人進(jìn)行技術(shù)考核.
(1)求從甲、乙兩組各抽取的人數(shù);
(2)求從甲組抽取的工人中恰有1名女工人的概率;
(3)求抽取的4名工人中恰有2名男工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是坐標(biāo)原點,若橢圓:的離心率為,右頂點為,上頂點為,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,為橢圓上兩動點,若有,證明:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十一國慶節(jié)期間,某商場舉行購物抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得3分;方案乙的中獎率為,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,抽獎結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)令,是否存在實數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 過點,離心率為,分別為左右焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若上存在兩個點,橢圓上有兩個點滿足三點共線,三點共線,且,求四邊形面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com