精英家教網 > 高中數學 > 題目詳情
設隨機變量ξ服從正態(tài)分布N(μ,σ2),且函數f(x)=x2+4x+ξ沒有零點的概率為
1
2
,則μ為( 。
A、1B、4C、2D、不能確定
分析:由題中條件:“函數f(x)=x2+4x+ξ沒有零點”可得ξ>4,結合正態(tài)分布的圖象的對稱性可得μ值.
解答:精英家教網解:函數f(x)=x2+4x+ξ沒有零點,
即二次方程x2+4x+ξ=0無實根得ξ>4,
P(ξ>4)=
1
2
,由正態(tài)曲線的對稱性知μ=4,
故選B.
點評:從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時取最大值 從x=μ點開始,曲線向正負兩個方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負兩個方向都是以x軸為漸近線的.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設隨機變量ξ服從正態(tài)分布N(0,1)Φ(x)=P(ξ<x,則下列結論不正確的是( 。
A、Φ(0)=
1
2
B、Φ(x)=1-Φ(-x)
C、p(|ξ|)<a=2Φ(a)-1(a>1)
D、p(|ξ|>a)=1-Φ(a)(a>0)

查看答案和解析>>

科目:高中數學 來源: 題型:

設隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1.3)=p,則P(-1.3<ξ<0)=( 。
A、
1
2
+p
B、1-p
C、1-2p
D、
1
2
-p

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中正確命題的個數是   ( 。
(1)cosα≠0是α≠2kπ+
π
2
(k∈Z)
的充分必要條件;
(2)若a>0,b>0,且
2
a
+
1
b
=1
,則ab≥4;
(3)若將一組樣本數據中的每個數據都加上同一個常數后,則樣本的方差不變;
(4)設隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=
1
2
-p

查看答案和解析>>

科目:高中數學 來源: 題型:

設隨機變量服從正態(tài)分布N(0,1),記φ(x)=P(ξ<x),則下列結論正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設隨機變量ξ服從正態(tài)分布N(1,δ2),若P(ξ>-2)=0.7,則函數f(x)=x2+4x+ξ不存在零點的概率是( 。
A、0.7B、0.8C、0.3D、0.2

查看答案和解析>>

同步練習冊答案