四面體ABCD中,以A為頂點(diǎn)的三條棱兩兩互相垂直,那么A在底面△BCD內(nèi)的射影是這個(gè)三角形的(    )

A.外心                B.垂心                C.內(nèi)心              D.重心

答案:B

解析:設(shè)A在底面上的射影為O,

則BC⊥平面AOD,∴BC⊥OD,同理BD⊥OC.

∴O為△BCD的垂心.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)使用類(lèi)比推理得到如下結(jié)論:
(1)同一平面內(nèi),三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b,類(lèi)比出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b;
(2)a,b∈R,a-b>0則a>b,類(lèi)比出:a,b∈C,a-b>0則a>b;
(3)以點(diǎn)(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2,類(lèi)比出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2;
(4)正三角形ABC中,M是BC的中點(diǎn),O是△ABC外接圓的圓心,則
AO
OM
=2
,類(lèi)比出:在正四面體ABCD中,若M是△BCD的三邊中線的交點(diǎn),O為四面體ABCD外接球的球心,則
AO
OM
=3

其中類(lèi)比的結(jié)論正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(diǎn)(1,1)為中點(diǎn)的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過(guò)點(diǎn)(
.
x
,
.
y
)

(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點(diǎn)為F1,F(xiàn)2,P為右支是異于右頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓圓心為T(mén),則點(diǎn)T的橫坐標(biāo)為a.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

在四面體ABCD中,以A為頂點(diǎn)的三條棱兩兩互相垂直,那么A在底面△BCD內(nèi)的射影是這個(gè)三角形的(。

A外心       B垂心                 

C內(nèi)心       D重心

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

在四面體ABCD中,以A為頂點(diǎn)的三條棱兩兩互相垂直,那么A在底面△BCD內(nèi)的射影是這個(gè)三角形的(。

A外心       B垂心                 

C內(nèi)心       D重心

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在四面體ABCD中,以A為頂點(diǎn)的三條棱兩兩互相垂直,那么A在底面△BCD內(nèi)的射影是這個(gè)三角形的()


  1. A.
    外心
  2. B.
    垂心
  3. C.
    內(nèi)心
  4. D.
    重心

查看答案和解析>>

同步練習(xí)冊(cè)答案