A. | 2條 | B. | 3條 | C. | 4條 | D. | 1條 |
分析 把兩圓的方程化為標(biāo)準(zhǔn)形式,分別求出圓心和半徑,考查兩圓的圓心距正好等于兩圓的半徑之差,故兩圓相內(nèi)切.推出公切線的條數(shù).
解答 解:圓C1的方程即:(x-2)2+(y-2)2=1,圓心C1(2,2),半徑 為1,
圓C2的方程即:(x-2)2+(y-5)2=16,圓心C2(2,5),半徑 為4,
兩圓的圓心距為$\sqrt{{(2-2)}^{2}+{(5-2)}^{2}}$=3,正好等于兩圓的半徑之差,故兩圓相內(nèi)切,故兩圓的公切線有1條,
故選:D.
點評 本題考查兩圓的位置關(guān)系,兩圓相外切的充要條件是:兩圓的圓心距等于兩圓的半徑之和;兩圓相外切時,公切線3條.考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2016)<0 | B. | f(2016)<e${\;}^{-201{6}^{2}}$ | ||
C. | f(2)<0 | D. | f(2)>e-4032 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 7.5 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com