(2012•江西模擬)定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“新不動點”,如果函數(shù)g(x)=
1
2
x2
(x∈(0,+∞)),h(x)=sinx+2cosxx∈(0,π),φ(x)=e1-x-2的“新不動點”分別為α,β,γ,那么α,β,γ的大小關系是(  )
分析:由題設中所給的定義,方程f(x)=f'(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,對三個函數(shù)所對應的方程進行研究,分別計算求出α,β,γ的值或存在的大致范圍,再比較出它們的大小即可選出正確選項
解答:解:由題意方程f(x)=f'(x)的實數(shù)根x0叫做函數(shù)f(x)的“新駐點”,x>0
對于函數(shù)g(x)=
1
2
x2
(x>0),由于g′(x)=x,由
1
2
x2=x
可得x=2,即α=2
對于函數(shù)h(x)=sinx+2cosx(0<x<π),
由于h′(x)=cosx-2sinx,題意可得sinx+2cosx=cosx-2sinx,即tanx=-
1
3
-
3
3

∵x∈(0,π),
6
<β<π
對于函數(shù)φ(x)=e1-x-2,由于φ′(x)=-e1-x,可得γ=0
綜上γ<α<β
故選C
點評:本題是一個新定義的題,理解定義,分別建立方程解出α,β,γ的值或存在范圍是解題的關鍵,本題考查了推理判斷的能力,計算能力屬于基本題型
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)球O的球面上有四點S,A,B,C,其中O,A,B,C四點共面,△ABC是邊長為2的正三角形,面SAB⊥面ABC,則棱錐S-ABC的體積的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)在△ABC中,P是BC邊中點,角A、B、C的對邊分別是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,則△ABC的形狀為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知數(shù)列{an}是各項均不為0的等差數(shù)列,公差為d,Sn 為其前n項和,且滿足an2=S2n-1,n∈N*.數(shù)列{bn}滿足bn=
1anan+1
,Tn為數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}的通項公式和Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn,成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,將函數(shù)f(x)向左平移
π
6
個單位后得函數(shù)g(x),設△ABC三個角A、B、C的對邊分別為a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
,
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點A作斜率為-1的直線,該直線與雙曲線的兩條漸進線的交點分別為B、C.若
AB
=
1
2
BC
,則雙曲線的離心率是
5
5

查看答案和解析>>

同步練習冊答案