過原點(diǎn)的直線l與函數(shù)y=
1
x
的圖象交于B,C兩點(diǎn),A為拋物線x2=-8y的焦點(diǎn),則|
AB
+
AC
|=( 。
A、2
B、2
2
C、4
D、8
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得點(diǎn)B和點(diǎn)C關(guān)于原點(diǎn)對稱,可得|
AB
+
AC
|=2|
AO
|.再根據(jù)拋物線的方程求得A(0,-2),從而得出結(jié)論.
解答:解:由題意可得點(diǎn)B和點(diǎn)C關(guān)于原點(diǎn)對稱,∴|
AB
+
AC
|=2|
AO
|.
再根據(jù)A為拋物線x2=-8y的焦點(diǎn),可得A(0,-2),
∴2|
AO
|=4,
故選:C.
點(diǎn)評:本題主要考查拋物線的方程、簡單性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
則當(dāng)x∈[-4,-2)時,函數(shù)f(x)≥
t2
4
-t+
1
2
恒成立,則實(shí)數(shù)t的取值范圍為( 。
A、2≤t≤3
B、1≤t≤3
C、1≤t≤4
D、2≤t≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p≠0)經(jīng)過圓x2+y2+2x-4y+4=0的圓心,則p為( 。
A、-2B、1C、2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(c,0),直線x=
a2
c
與一條漸近線交于點(diǎn)A,△OAF的面積為
a2
2
(O為原點(diǎn)),則拋物線y2=
4a
b
x的焦點(diǎn)坐標(biāo)為( 。
A、(0,0)
B、(
1
2
,0)
C、(1,0)
D、(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x,過點(diǎn)M(1,0)的直線交拋物線于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若|AF|=6,O為原點(diǎn),則△OAB的面積是( 。
A、2
2
B、
5
2
2
C、3
2
D、
7
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2+1在點(diǎn)(1,2)處的切線為l,則直線l上的任意點(diǎn)P與圓x2+y2+4x+3=0上的任意點(diǎn)Q之間的最近距離是( 。
A、
4
5
5
-1
B、
2
5
5
-1
C、
5
-1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=-
2a
b
ln(x+1)的圖象在x=1處的切線l過點(diǎn)(0,-
1
b
),并且l與圓C:x2+y2=1相離,則點(diǎn)(a,b)與圓C的位置關(guān)系是( 。
A、在圓上B、在圓外
C、在圓內(nèi)D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a、b、c、d滿足(b-lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為(  )
A、
2
2
B、
1
2
C、2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克。

(1)求的值;

(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大

 

查看答案和解析>>

同步練習(xí)冊答案