解:(I)由題意可知:定義域:(0,+∞),f'(x)=lnx+1,令f'(x)=0,得x=
,(1分)
則當(dāng)x∈(0,
)時(shí),f′(x)<0,f(x)單調(diào)遞減;(2分)
當(dāng)x∈(
,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增(4分)
(II)令h(x)=xlnx-kx+k,則h′(x)=1+lnx-k,
∴h(x)在(0,e
k-1)上是減函數(shù),在(e
k-1,+∞)上是增函數(shù),
∴h(x)≥h(e
k-1)=k-e
k-1,
由題意k-e
k-1≥0,
令t(k)=k-e
k-1,則t′(k)=1-e
k-1,
∴t(k)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù),
∴t(k)≤t(1)=0,
∴k-e
k-1≤0,
∴k-e
k-1=0,∴k=1.
(III)由(II)得,?x>1,xlnx>x-1恒成立,∴l(xiāng)nx>
=1-
,
令x=k
2(k∈N*,k≥2),
,
取k=2,3,…,n-1,n.并累加得:
,
∴2nlnn!>(n-1)
2又當(dāng)n=1時(shí),2nlnn!=(n-1)
2
∴2nlnn!≥(n-1)
2(n∈N
*).
分析:(I)利用導(dǎo)數(shù)求出函數(shù)的極值,然后求f(x)的單調(diào)區(qū)間;
(II)令h(x)=xlnx-kx+k,利用導(dǎo)數(shù)研究其單調(diào)性得h(x)≥h(e
k-1)=k-e
k-1,從而有k-e
k-1≥0,再令t(k)=k-e
k-1,利用導(dǎo)數(shù)研究其單調(diào)性得k-e
k-1≤0,利用兩邊夾原理即可得出k-e
k-1=0,從而求出k的值;
(III)利用?x>1,xlnx>x-1恒成立,結(jié)合取k=2,3,…,n-1,n.并累加得即可證明2nlnn!≥(n-1)
2.
點(diǎn)評(píng):本題是中檔題,考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,不等式的綜合應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.