已知函數(shù),其中
(1)寫出的奇偶性與單調(diào)性(不要求證明);
(2)若函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824023528359430.png" style="vertical-align:middle;" />,求滿足不等式的實(shí)數(shù)的取值集合;
(3)當(dāng)時(shí),的值恒為負(fù),求的取值范圍.
(1)是在R上的奇函數(shù),且在R上單調(diào)遞增.(2).(3)

試題分析:(1)先由解析式分析定義域?yàn)镽,再根據(jù)奇偶函數(shù)的定義由可知是奇函數(shù);(2)函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824023528359430.png" style="vertical-align:middle;" />,結(jié)合(1)的奇偶性和單調(diào)性,可得關(guān)于的不等式組,從而求出.(3)由上單調(diào)遞增,分析要恒負(fù),只要,即,從而求出的取值范圍.
試題解析:(1)是在R上的奇函數(shù),且在R上單調(diào)遞增.
的奇偶性可得,由的定義域及單調(diào)性可得,解不等式組可得,即.
由于上單調(diào)遞增,要恒負(fù),只要,即,又,可得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且的長(zhǎng)度為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是定義在上的減函數(shù),滿足.
(1)求證:;
(2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性:
(2)若函數(shù)的圖像上存在不同兩點(diǎn),設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知函數(shù),則下列結(jié)論中正確的是(   )
A.若的極值點(diǎn),則在區(qū)間內(nèi)是增函數(shù)
B.若的極值點(diǎn),則在區(qū)間內(nèi)是減函數(shù)
C.,且
D.,上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若實(shí)數(shù)滿足,則 (  )
A.-2B.-1 C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)在(-∞,2)上是增函數(shù),且的圖象關(guān)于軸對(duì)稱,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)時(shí)成立(其中的導(dǎo)函數(shù)),若,的大小關(guān)系是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是 (  )
A.B.(-,-1),(3,+)C.(1,3)D.(1,+)

查看答案和解析>>

同步練習(xí)冊(cè)答案