分析 (1)將a=1代入函數(shù)的表達(dá)式,令f(x)>0,解出即可;
(2)通過討論a=0,a≠0兩種情況,結(jié)合二次函數(shù)的性質(zhì),得到不等式組,從而求出a的范圍;
(3)通過討論a的范圍,得到不等式組,解出即可.
解答 解:(1)a=1時(shí),f(x)=x2-2x-3=(x-3)(x+1),
令f(x)>0,解得:x>3或x<-1;
(2)令g(x)=x2-(2a+1)x-3a2,
若a=0,則g(x)=x2-x,令g(x)<0,解得:0<x<1,
∴f(x)<x的解集為(0,1),不滿足條件;
若a≠0,則g(0)<0,
所以$\left\{{\begin{array}{l}{g(1)≥0}\\{g({-1})≥0}\end{array}}\right.$,得$\frac{{1-\sqrt{7}}}{3}≤a<0$,
(3)若$\frac{1}{4}<a≤1$,則$\left\{{\begin{array}{l}{|{f(1)}|≤4a}\\{|{f({4a})}|≤4a}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{|{1-2a-3{a^2}}|≤4a}\\{|{5{a^2}}|≤4a}\end{array}}\right.$,得$\frac{1}{4}<a≤\frac{4}{5}$,
若a>1,|f(4a)|=|5a2|≤4a不成立,
所以a的取值范圍是($\frac{1}{4}$,$\frac{4}{5}$].
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查不等式的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | [-1,3) | C. | (-1,3] | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,1] | C. | [-1,1] | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com