【題目】下列函數(shù)中,在區(qū)間(﹣∞,0)上是增函數(shù)的是(
A.
B.y=|x﹣1|
C.y=x2﹣4x+8
D.

【答案】A
【解析】解:B選項可以看做由y=|x|向右平移一個單位得到,所以它在區(qū)間(﹣∞,0)上是減函數(shù),排除B.
C選項y=x2﹣4x+8對稱軸為x=2,開口方向向上,所以它在區(qū)間(﹣∞,0)上也是減函數(shù),排除C.
D選項 定義域為(﹣∞,1],當(dāng)x變大時1﹣x是變小的,所以 是變小的,
即函數(shù)在(﹣∞,1]上是單調(diào)遞減的,排除D.
故選A.
【考點精析】掌握函數(shù)單調(diào)性的判斷方法是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題,其中為真命題的是( ) ① ;②
;④
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點P是橢圓 上的一點,F(xiàn)1和F2是焦點,且 ,則△F1PF2的周長為 , △F1PF2的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函數(shù)g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,BC中點,則異面直線EF與AB1所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹, 竹尾風(fēng)割斷, 剩下三十節(jié),一節(jié)一個圈. 頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三. 一蟻往上爬,遇圈則繞圈. 爬到竹子頂,行程是多遠?”(注釋:第一節(jié)的高度為尺;第一圈的周長為尺;每節(jié)比其下面的一節(jié)多尺;每圈周長比其下面的一圈少尺) 問:此民謠提出的問題的答案是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: ,不經(jīng)過原點O的直線l:y=kx+m(k>0)與橢圓E相交于不同的兩點A、B,直線OA,AB,OB的斜率依次構(gòu)成等比數(shù)列.
(Ⅰ)求a,b,k的關(guān)系式;
(Ⅱ)若離心率 ,當(dāng)m為何值時,橢圓的焦距取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax2+x﹣a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱柱中,點分別為的中點.

(1)求證: 平面

(2)若四棱柱是長方體,且,求平面與平面所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案