如圖,將一個(gè)各面都涂了油漆的正方體,切割為125個(gè)同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個(gè)小正方體,記它的油漆面數(shù)為X,則X的均值E(X)等于(  )

A. B. C. D.

 

B

【解析】125個(gè)小正方體中8個(gè)三面涂漆,36個(gè)兩面涂漆,

54個(gè)一面涂漆,27個(gè)沒有涂漆,

從中隨機(jī)取一個(gè)正方體,涂漆面數(shù)X的均值

E(X)×0×1×2×3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:選擇題

直線yx與函數(shù)f(x)的圖象恰有三個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是 (  )

A[1,2) B[1,2] C[2,+∞) D(,-1]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題

若點(diǎn)A(1,1)在矩陣M對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(1,1),求矩陣M的逆矩陣.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:填空題

某學(xué)員在一次射擊測試中射靶10次,命中環(huán)數(shù)如下:

7,8,7,9,5,4,9,10,7,4

(1)平均命中環(huán)數(shù)為________;(2)命中環(huán)數(shù)的標(biāo)準(zhǔn)差為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-2練習(xí)卷(解析版) 題型:解答題

假設(shè)某班級(jí)教室共有4扇窗戶,在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5.記此時(shí)教室里敞開的窗戶個(gè)數(shù)為X.

(1)X的分布列;

(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長就會(huì)將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開的窗戶個(gè)數(shù)為Y,求Y的數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:解答題

4個(gè)不同的球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi).

(1)共有幾種放法?

(2)恰有一個(gè)盒不放球,共有幾種放法?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:選擇題

一名老師和兩名男生兩名女生站成一排照相,要求兩名女生必須站在一起且老師不站在兩端,則不同站法的種數(shù)為(  )

A8 B12 C16 D24

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:解答題

已知橢圓C1y21,橢圓C2C1的長軸為短軸,且與C1有相同的離心率.

(1)求橢圓C2的方程;

(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1C2上,2,求直線AB的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:選擇題

設(shè)l是直線,αβ是兩個(gè)不同的平面(  )

A.若lα,lβ,則αβ

B.若lαlβ,則αβ

C.若αβ,lα,則lβ

D.若αβlα,則lβ

 

查看答案和解析>>

同步練習(xí)冊(cè)答案