【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A.
B.
C.
D.
【答案】A
【解析】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的兩根為a、b;
根據(jù)函數(shù)零點與方程的根的關(guān)系,可得f(x)=(x﹣a)(x﹣b)的零點就是a、b,即函數(shù)圖象與x軸交點的橫坐標(biāo);
觀察f(x)=(x﹣a)(x﹣b)的圖象,可得其與x軸的兩個交點分別在區(qū)間(﹣∞,﹣1)與(0,1)上,
又由a>b,可得b<﹣1,0<a<1;
在函數(shù)g(x)=ax+b可得,由0<a<1可得其是減函數(shù),
又由b<﹣1可得其與y軸交點的坐標(biāo)在x軸的下方;
分析選項可得A符合這兩點,BCD均不滿足;
故選A.
【考點精析】本題主要考查了函數(shù)的零點與方程根的關(guān)系的相關(guān)知識點,需要掌握二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進(jìn)行統(tǒng)計,將結(jié)果分成6組,分別是: , ,制成如下所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).
(1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;
(2)為做好春節(jié)期間的商場促銷活動,商場設(shè)計了兩種不同的促銷方案.
方案一:全場商品打八五折.
方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,變量增加一個單位時, 平均增加個單位;
③老師在某班學(xué)號為1~50的50名學(xué)生中依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)生進(jìn)行作業(yè)檢查,這種抽樣方法是系統(tǒng)抽樣;
其中正確的個數(shù)是( )
A. B. 2 C. D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗公式P=3 ,Q=t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(萬元).求:
(1)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達(dá)到最大值,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點, 是橢圓上的點,設(shè)動點滿足.
(1)求動點的軌跡的方程;
(2)若直線與曲線相交于, 兩個不同點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標(biāo)方程為,圓與直線交于,兩點,點的直角坐標(biāo)為.
(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中, 平面, 平面, , ,又, .
(1)求 與平面所成角的正弦值;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)設(shè)關(guān)于x的函數(shù)F(x)=f(4x﹣b)+f(﹣2x+1)有零點,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com