下列函數(shù)中既是增函數(shù)又是奇函數(shù)的是
A. B.
C. D.
D
【解析】
試題分析:四個選項中都給出了具體的函數(shù)解析式,其中選項D是分段函數(shù),可由f(-x)=-x|-x|=-x|x|=-f(x)知函數(shù)為奇函數(shù),在分析x>0時函數(shù)的增減性,根據(jù)奇函數(shù)的對稱性進(jìn)一步得到函數(shù)在整個定義域內(nèi)的增減性;選項B舉一反例即可; C、A中的兩個函數(shù),定義域均不關(guān)于原點對稱,都不是奇函數(shù).根據(jù)題意,由于解:由f(-x)=-x|-x|=-x|x|=-f(x),知函數(shù)f(x)=x|x|為奇函數(shù),又f(x)=x|x|= x2 (x>0),-x2 (x<0)
當(dāng)x>0時,f(x)=x2在(0,∞)上為增函數(shù),根據(jù)奇函數(shù)圖象關(guān)于原點中心對稱,所以當(dāng)x<0時,f(x)=-x2在(-∞,0)上也為增函數(shù),所以函數(shù)f(x)=x|x|在定義域內(nèi)既是奇函數(shù),又是增函數(shù),故A正確.由于正弦函數(shù)是周期性函數(shù),不滿足定義域內(nèi)增函數(shù),因此錯誤,對于C,A,定義域部關(guān)于原點對稱,故選D.
考點:函數(shù)的奇偶性及函數(shù)的單調(diào)性
點評:本題主要考查了函數(shù)的奇偶性及函數(shù)的單調(diào)性的判斷,尤其y=tanx的單調(diào)區(qū)間是解答中容易出現(xiàn)錯誤的地方,要注意掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com